The 2d Euler-boussinesq Equations with a Logarithmically Supercritical Velocity
نویسنده
چکیده
This paper establishes the global existence and uniqueness of solutions to a generalized 2D Euler-Boussinesq systems of equations with a logarithmically supercritical velocity.
منابع مشابه
The 2d Boussinesq-navier-stokes Equations with Logarithmically Supercritical Dissipation
This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special cons...
متن کاملRegularity Criteria for the 2d Boussinesq Equations with Supercritical Dissipation∗
This paper focuses on the 2D incompressible Boussinesq equations with fractional dissipation, given by Λαu in the velocity equation and by Λβθ in the temperature equation, where Λ= √−Δ denotes the Zygmund operator. Due to the vortex stretching and the lack of sufficient dissipation, the global regularity problem for the supercritical regime α+β<1 remains an outstanding problem. This paper prese...
متن کاملLOGARITHMICALLY REGULARIZED INVISCID MODELS IN BORDERLINE SOBOLEV SPACES DONGHO CHAE AND JIAHONG WU Dedicated to Professor Peter Constantin on the occasion of his sixtieth birthday
Several inviscid models in hydrodynamics and geophysics such as the incompressible Euler vorticity equations, the surface quasi-geostrophic equation and the Boussinesq equations are not known to have even local well-posedness in the corresponding borderline Sobolev spaces. Here H is referred to as a borderline Sobolev space if the L∞-norm of the gradient of the velocity is not bounded by the H-...
متن کاملAn incompressible 2D didactic model with singularity and explicit solutions of the 2D Boussinesq equations
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time ...
متن کاملEventual Regularity of the Two-Dimensional Boussinesq Equations with Supercritical Dissipation
This paper studies solutions of the two-dimensional incompressible Boussinesq equations with fractional dissipation. The spatial domain is a periodic box. The Boussinesq equations concerned here govern the coupled evolution of the fluid velocity and the temperature and have applications in fluid mechanics and geophysics. When the dissipation is in the supercritical regime (the sum of the fracti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012